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Isothermal flame balls: Effect of autocatalyst decay
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The steady, spherically symmetric solutions to the reaction-diffusion equations based on a simple autocata-
lytic reaction followed by the decay of the autocatalyst are considered. Three parameters—the orders with
respect to the autocatalyst in the autocatalpsénd in the decay and the rate of decay of the autocatalyst
relative to its autocatalytic productidd—determine the steady concentration profiles. Numerical integrations
for a fixed value of the order of the autocatalyst show that the concentration profiles have different forms
depending on whetheg<<p or q=p. In the former case, there is a critical decay rtg;; for solutions to
exist, with multiple solutions foK <K(,;; . In the latter case, there is a single solution for each value @his
difference in the nature of the solution is confirmed by an analysip farge. The temporal stability of the
isothermal flame balls is examined, with temporally stable solutions being possible, provided that the ratio of
the diffusion coefficient of the autocatalyst to that of the reactant is sufficiently small. The change in stability
appears only when there are multiple solutions and is through a subcritical Hopf bifurcation.

DOI: 10.1103/PhysReVvE.68.036210 PACS nuni)er89.75.Kd, 47.54tr, 02.30.Mv, 82.33.Vx

[. INTRODUCTION like to explore to what extent the analogy between premixed
combustion and isothermal autocatalytic systems can be
In a previous papefl] we considered the steady, spheri- drawn. Spherical flames may be stabilized by radiative heat
cally symmetric solutions on an infinite domain to a systemloss, which then suggests an extension to our kinetic scheme
of reaction-diffusion equations based on the single autocatde include the additional decay step
lytic reaction

- i a (g=
A+pB—(p+1)B, withrate kj;abP, (1) B-C, withrate kzb? (q=1), 2)

wherep=1, anda andb are the concentrations of react#nt whereby the autocatalyst decays to an inert prodliets a
and autocatalydB. We showed that a transformation of vari- kinetic mimic of heat loss. In studies of flame balls, radiation
ables reduced the problem to a single equation in whpich introduces a term witd" with n=2-4 in the energy balance
the order of the autocatalysis, was the only parameter. Thig3,6]; we therefore investigate the behavior of our system for
equation has solutions satisfying the required boundary conrarious values of]. The traveling front structures that the
ditions only if p>5. For 1=p<?5, all (positive solutions reaction scheme in Eq$l) and(2) can support have been
have compact support, i.e., they are zero out of a boundeelxamined in Refs[7—10], where it was seen that the addi-
domain. We examined the nature of the solution botlpas tional decay step can make qualitative differences in the be-
—5" and whenp was large. havior of the solution. It can totally inhibit traveling front
A further consideration of the time-dependent problem seformation as well as making substantial changes to the trav-
up in Ref.[1] showed that these solutions were temporallyeling front profiles that would otherwise form.
unstable to perturbations in the radial direction. Our study Here we consider the steady, spherically symmetric solu-
was motivated, in part, by the classic problem of “flametions to the reaction-diffusion equations with reactions in
balls,” or steady, radially symmetric solutions of the Egs.(1) and(2) as the kinetics. We are unable, as in Rétf,
reaction-diffusion-conduction equations for premixed lami-to reduce the problem to a single equation, but we can make
nar flames first identified by Zel'dovicf2]. In this context, some simplifications to reduce the number of parameteps to
these solutions are also unstable in the adiabatic limitand g (orders of the autocatalysis and decayd a further
though they can become stable if there igmal) heat loss parameteK which represents the rate of decayB®felative
[3]. The analogy between the feedback through the temperae its autocatalytic production. Numerical integrations for a
ture in combustion systems and through the autocatalyst ifixed value ofp show that the solution has a different form
isothermal systems of the type given by Ei)) has previ- depending on whethey<p or q=p. In the former case,
ously been recognized. It has been shd#hthat a simple there is a critical valu&,;; of K for solutions to exist, with
cubic autocatalysis with appropriate difference in diffusivi- multiple solutions folK <K,;;. In the latter case, there is a
ties can lead to cellular fronts similar to those observed irsingle solution for each value df. This difference in the
premixed flames with small Lewis numbdis]. We would  nature of the solution is confirmed by an analysisgddarge.
We also examine the temporal stability of the solutions, find-
ing stabilization, provided thdD, the ratio of the diffusion
*Email address: horvathd@chem.u-szeged.hu coefficient ofB to that ofA, is sufficiently small. This change
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in stability appears only when there are multiple solutionsmum value of unity, defining the local input of the autocata-
and is through a subcritical Hopf bifurcation in the casedlyst to initiate the reaction. We start by considering the exis-
studied here. tence of reaction balls which are steady state solutions to
Egs.(8) and(9).
Il. MODEL SYSTEM

The equations governing the reaction and diffusion of the Ill. STEADY SOLUTIONS

two reactants\ andB are(see Refs[8,11-13, for example We can, following the approach given in R¢L], scale
P b out the ratio of diffusion coefficientd), from the equations
a . . . . .
& _D,V2a—ksab®, —=DoV2b+k,ab’—k,bl. for .the_ steady solut]on_s—Eqs(B) with vanishing time
- A L ot B ! 2 derivatives—by substituting

©)

whereD, andDg are the diffusion coefficients ok andB,
respectively, subject to the boundary conditions

b=D"'h, T=D P, (10)

and leavinga unchanged. This leads to the reduced system
a—a;, b0 asl|x—, (4) (on omitting the tildep

representing only reactaAtsufficiently far from the reaction a'+ Ea’ _ab’=0. b'+ Eb, +abP—Kb9=0 (11)
zone and initial condition that r ' r

a=ap, b=0 att=0 (5 still subject to Eq(9), whereK=DP~ 9 and where primes
denote differentiation with respect to

The steady states are then dependent only on the single
) ) . ?)arameterK, representing the relative decay rate of the au-
is some input ofB to start a reaction. V\ﬁ make E@)  {5catalyst in the new coordinate system; though we note that
dimensionless using the reaction tinlg45) * and a length g temporal stability depends separately on tandK
scale based on this aridi, , by putting (or «). Itis the nontrivial(i.e.,a# 1, b#0) solutions to Egs.
172 (11) subject to Eq(9) that we now consider in detail.

for all x, i.e., a homogeneous distribution of pukeapart
from some local region, centered on the origin, where ther

kiah

a=aga, b=agh, t=(kadt, ;=XD—
A

A. Numerical simulations

(6)
_ _ _ _ _ We obtain numerical solutions of Eq11) that are
This leads to the dimensionless equati¢os dropping the  pounded as—0. This means that they have the form
bars for convenienge

apb§P+ paghf (Kb —aghf)
120

+0(r%), (12)

agh}

ja_ _, db ) a=ag+ r2+ ré
Ezv a—abP, E:DV b+abP— kb9, (7)

whereD=Dgz/D, is the ratio of diffusion coefficients and
k=k,/(k; a5~ 9%1) is the decay rate d8 with respect to the 1
autocatalysis. b=Dbo— g(aobg— Kbg)r?

We are investigating spherically symmetric concentration
profiles, i.e., solutions to the equations

aOb(Z)p—(paobg_l—qug_l)(aObg—Kbg)) 4

da d%a 2da 120

—_— = - — — p
g2 roor ab’, +0(r®,

for r small resulting from the zero-concentration gradients at
+abP— kb9, (8)  the origin. Hereay andb, are the central concentrations of
the reactanfA and autocatalysB, respectively, to be deter-
) ) mined in the numerical integrations.
on O<r<e, t>0, wherer measures thé¢radia) distance Previously[1] (with K=0) we obtained the ground states
from the origin, subject to or fastest decaying solutions representing the critical distri-
bution of B, above which an outpropagating front is gener-
ated and below which the initiation collapses to the trivial
) state containing only reactaAt This meant looking for so-
a=1, b=Dbg(r) at t=0 (0<r<w«), lutions which wereO(r ~ %) for r large. The situation is dif-
ferent withK >0, and the form fob which decays fastest as
where b; is a positive constant and(r) is some smooth r—o needs to be considered. Fg=1 the analytical solu-
function, nonzero only for a finite range ofwith a maxi-  tion is taken at the limitr —«, for q#3 the form ofb

E: - -

Jb b 2 b
0[‘2 r or

a,b continuous atr=0, a—1,b—0 as r—o (t>0),
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FIG. 1. Reaction radiuR, as a function ofK for p=6 and
range of values fog fromq=1 toq=7. FIG. 2. Variation ofK,;; with q for p=6.

~O(r™") is tested while forq=3, b.~O(r‘1[|n(r)].‘m) IS such thag<p have a qualitatively similar form, in that there
applied for matching the exponents in the terms with leadings a critical valueK,;; for K. A saddle-node bifurcation oc-

order, resulting in curs atK=K,;;, with no solutions forK >K_,; and two
solution branches foK<K_,;;. The figures resemble those
b~ Eef Kt for q=1, (13) observed in flame studies where the radius is shown against
r the parameter representing heat |§8s6]. All the lower

branch solutions start at the same valueRgrasK—0, the
value obtained in Refi1] for p=6, and the upper branch

2
D) for 1<q<s, solutions appear to approach tke=0 axis asK decreases.
The curves for values af=p (gq=6,7) are monotone, with
Ry, increasing a«K is increased. A graph df.,; againstg,
b~ C, for q=3, shown in Fig. 2, illustrates tha{.,;; increases very rapidly
ryinr asq approacheg|=6 (asq—p~), as perhaps could be ex-

pected.

Typical differences between the lower and upper branch
concentration profilegas identified in Fig. Lcan be seen in
Fig. 3(a), where we ploa andb profiles forp=6, g=1, and

C
b~ 3 for >3

for r large, taking K=0.0001. The outer boundary conditions are approached at
relatively small values of for the lower branch solutions
a1 & (14) (broken line$, whereas considerably larger valuesroare
r required for the upper branch solutiotfall lines). The val-

ues of bothay, andbg are higher for the lower branch solu-

in all cases withC, and C, constants that are also deter- tions which are monotonéncreasing fora and decreasing
mined in the numerical integrations. for b). The upper branch profile fdy has a local maximum

The solutions for small and largegiven by Egqs.(12—  (in this case of approximately 0.393 28ratr,=60.9) be-
(14) were joined numerically using a standard shootingfore decreasing to zero for largeThis internal maximum is
method for solving boundary-value problems. The solutiona feature of the profiles for smaller valueskofand is lost at
was calculated at=0.001 using Eq(12), and this was ex- higher K, as can be seen in Fig(8 where we plot the
tended numerically using thevobe packagd 14]. The val-  corresponding profiles forK=0.0005. Here the(upper
ues ofay and by were adjusted until the behavior given by branch profile for b is monotone decreasing though there is
(13) and(14) was approached at a large value ofVe found  central region wheré takes almost constant values aais
that taking values of between 200.0 and 400.0 gave suffi- almost zero. This effect is also seen in Figa)3 The con-
cient accuracy. This procedure determines the values pf centration profiles of the autocatalysagain return the char-
by, C4, andC, for given values oK,p,q. acteristics of observed temperature distributions in flame

For the results presented below we sefeet6, being the balls[15,16].
smallest integer where a stationary spherical solution exists The features noted for the concentration profiles shown in
for K=0 [1], and consider different values for In Fig. 1  Fig. 3 are brought out more clearly in Fig. 4. In Figajwe
we plot the “reaction radius'’R, againstK, whereR, is the  plot by, the concentration of the autocatalysat the center,
position at which the local autocatalytic reactisRab?  againsK (again forp=6,0=1), the values corresponding to
achieves its maximum value. We identify two qualitatively the upper and lower branches shown in Fig. 1 are noted on
different types of behavior. The curves for those valueg of the figure. This figure shows clearly tha is always greater
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FIG. 3. Concentration profiles andb for the upper branckfull
lines) and the lower branckbroken lines for p=6, g=1, and(a) FIG. 4. (a) Variation of the concentration d at the centeri(
K=10"%and(b) K=5x10"*. =0) with K. (b) Dependence of,, the position wheré achieves
its local maximum(upper branch solutionson K. Both graphs are

for the lower branch solutions than for upper branch solu—fOlr p=6.q=1.

tions. An analogous temperature difference for the upper an\(/jvhere —b>1 and to obtain a consistent matching for this
lower branches has led to the labeling as “cold giant” and q=p=>1, 9

; -3
“hot dwarf,” respectively, in flame studig$]. Note that, for case we require that be small, of the ordeD(p™). We

the lower branchbg increases initially wittK from its value then take
for K=0 before decreasing to its value at the saddle-node _ K
bifurcation. In Fig. 4b) we plotr,,, the position of the in- g=p gy, K= = (15

©

ternal maximum inb for the upper branch solutions. The
figure emphasizes that this effect requikeso be relatively o
small, i.e.,K<K, (Kq=3.083x 10 * for this casg For K whereqy andK areO(1). In this case the structure of the
>Kg, Irm=0 andb is monotone decreasing for all solution forK # 0 for p andq large is similar to that found in
The asymptotic solution fop>1 obtained in Ref[1] Ref.[1] whenK=0. There is a relatively thin reaction re-
provided useful insights into the nature of the solution whergion at a distanceX(p) of O(p) from the center. Ahead of
K=0. This limit is also a useful guide to the behavior of the this is a thicker outer region which is dominated by diffu-

solution whenK #0, and it is this limit that we consider Sion. The central inert core region, seen whes0, now

next. becomes a region in which the effects of the decay reaction
in Eqg. (2) are significant. It is the matching of the solutions
in these three regions that determines the “reaction radius”

B. Solution for p large in terms of K. The details of the calculations are given in

In this section we derive a relation betweknand the APPendix A. Here we present the main results of the match-

reaction radiusR,, analytically, using an asymptotic expan- ing. . . B
sion for large values ofp. This relation arises from a _We look forgsolutlon of Eqs(11) by puttingr =pX(p)
boundary-value problem, i.e., a boundary-value problem will* I and expanding

be derived, and for a given value Kfthe value ofR, can be

obtained by solving this problem. We concentrate on the case X(p)=Xo+Xp 14+---.
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At leading order we obtain a relation betwegn and X,
namely,

1
xgziexlfxo (16)

(see Appendix A for further detaijlsThe description is com-
pleted andX, determined in the inner region, where whole of
the reactanA has been consumed and in which we put

r—pX(p)

Y=
Xop

. b=1-p YUg+p U;+---).

HereY is a modified space variable atth,U;, ... repre-
sent the concentration &. Solving the resulting boundary-
value problem

Ul+ i_u ! +KX2e %Yo=0 17)
O 14y 0 T '
X, _
UO(O)=U6(0)=X—, Uy boundedat Y=-1
0
(18

together with Eq(16), gives the relation betwedf andX.
We note that, ifK=0, thenU,=0, X;=0, and Eq.(16)
gives the valueX,=1/y2 found in Ref[1]. ForK+0, Egs.
(17) and (18) have to be solved numerically to determine
X1 /X, which can then be used in E@.6) to determine how

X, varies with K. Note thatX, gives the location of the
autocatalytic reactiofto leading orderand is effectively the
reaction radiu}, used in Fig. 1.

The results are shown in Fig. 5 where we p¥t/X,

againstK for a range ofgg, which is essentially Irig;) plot-
ted againsK/p®. The important point to note from the figure
is that there is a critical valu€,;; of K for qo<<1 [Fig. 5a)]
and no such critical value fogy=1. This is illustrated in
Fig. 5(b) where we contrast results fop=0.95 with those

for gp=1, 1.05. The values d?crit are relatively large and
increase considerably gg— 1 from below. This can be seen

in Fig. 5@ and more clearly in Table |, where we g€,
for increasing values ofl,. For p=6 andq,=5/6 (corre-
sponding to the largest value of plotted in Fig. 2, we
obtain K.,;;=0.229 from thep>1 solution. This is some-
what of an overestimate of the valle,;;=0.057 469 7 ob-

tained from the numerical solutions, though good agreement

at this relatively low value op could not really be expected.
It is shown directly in Appendix B that having,<1 (i.e.,
havingg<p) is necessary for multiple solutions.

A relatively straightforward regular expansion k& for
the lower branch solutions gives
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FIG. 5. Plots ofX; /X, against? obtained from the numerical
solution of Egs.(17) and (18) for the asymptotic expansion fqr
large. The position of the “reaction radius” is given By, where
Xo=expXi/2X,)/\2; (@ ¢y=0.5,0.6,0.7,0.8,0.9 andb) q,
=0.95,1,1.05 to show thaf,<1 is necessary for the existence of a
critical point.

1

This expansion is independent @f up th(K), and so all
the lower branch solutions leave the€=0 axis (at X,

p

2

K
_— ...

or
12p3

Ry= ) for K small. (19

TABLE I. Values of Em for different qo obtained from Eq.
(A14) for the asymptotic expansion farlarge.

Qo Kcrit
0.2000 4.4149
0.5000 8.2407
0.6000 11.3957
0.7000 17.8472
0.8000 35.6098
0.8333 49.5666
0.9000 132.2332
0.9500 563.5950
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FIG. 6. Graph of the reaction radilg, as a function ofx for
p=6,0=1 and range of values fdp=1,2/3,0.5,0.4. The broken D
lines correspond to unstable and the full lines to stable solutions. £ 7. |ocation of the Hopf bifurcatiofon the upper branch
solutiong for a range ofD, with p=6,9=1. Also shown with
=1/,/2) with the same slope. This can be clearly seen in Figdotted line is the location of the saddle-node bifurcation.
5(a) and is also a feature of the results shown in Fig. 1.

saddle-node bifurcation occurs at the same valuk dfiere
at K=6.19025<10 %). The increase in the domain of sta-
bility with decreasingD is in accordance with the similar

In our previous study1] the steady states that we ob- effect obtained for decreasing Lewis number for flame balls
tained were temporally unstable. They could be regarded a@s combustion systems3].
giving initial conditions dividing cases where propagating We integrated initial-value probleri8) numerically start-
reaction-diffusion fronts formed from those where propagading with initial profiles fora andb calculated from the shoot-
tion failed and the system returned to its original unreactedng method used to determine the steady states. We used the
state. The effect of including the decay of the autocatalyst irsame grid size that was used for the calculation of the eigen-
the reaction scheme, Eg4) and(2), is to change the tem- values. We considered a value fojjust on the unstable side
poral stability and allow stable, time-independent states t@f the Hopf bifurcation. The(smal) errors introduced
form. We find that these stable states arise only on the uppéhrough the numerical integration of the time-dependent
branch solutiongas identified in Fig. }, suggesting that we equations caused the system to move away from the steady
require higher order for the autocatalyst than for the order ostate, very slowly at first, and to perform a series of relatively
the removal Q<p) for stable states. long-lived oscillations of slowly increasing amplitude before

To investigate the stability of the reaction balls— finally it collapsed to the state containing a homogeneous
nontrivial solutions to Eqs(8)—we have to treaD and « distribution of reactanA, i.e, the trivial solution of Eq(8).
separately{transformation(10) is appropriate only for the The nature of these oscillations is shown in Figp)8vith a
steady statds We concentrate on the specific cage 6,
g=1, though similar behavior has been seen for other values 44
of g. In Fig. 6 we plotR, against« for a range oD. In the
figure the broken lines correspond to unstable and the full. 1|
lines to stable solutions. Figure 6 shows that a valu®of "'o1.4f
<1 is necessary to have a stable state with the onset o
stability occurring betweed® =1/2 andD = 2/3.

If we examine the dominant eigenvalues arising from the 4 . . .
linear stability analysis of the discrete system in more detail, (b)
we find that the lower branch solutions are all unstable
(saddle points with real eigenvalues of opposite sigme R, 1.5
turning points correspond to saddle-node bifurcatidas
would be expectedwith the upper branch solution changing . . .
to an unstable nod@ositive real eigenvalugsFor D suffi- Y 2000 4000 6000
ciently small, there are further changes, first to an unstable 1

focus and finally to a stable foclisomplex eigenvalues with FIG. 8. Temporal evolution of the radil, obtained from the
the real part changing sigrThus we can identify the change numerical integration of the initial-value proble(8) for D=0.4

in stability as being through a Hopf bifurcation. In Fig. 7 we and(a) x=0.046 299 1, showing the oscillatory growth of the so-
show how the values df(=DP %%, hereD°«), as used in |ution on the unstable side of the Hopf bifurcatiof) «

the steady state solutions, at which the Hopf bifurcation oc=0.045508, showing the solution decaying to the steady state on
curs (on the upper branghvaries withD. In this plot the the stable side of the Hopf bifurcation.

IV. STABILITY

18000 20000 22000 24000 26000 28000
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plot of R, against for a time period after the oscillations had flame balls with far field heat loss¢8]: the stable region
become large enough to be seen graphically. For this figuréPpears at smak and it grows towards the saddle-node
we tookx=0.046 299 1D = 0.4. We then changed the value bifurcation atKc; on decreasind or the corresponding

of k slightly to a value just on the stable side of the Hopf LeWiS number in flames. This implies that the decay of the
bifurcation and started the numerical integration with the@utocatalyst outside the reaction radius—defined as the posi-
previous profiles fom andb. Here the system relaxed back to fion at which the local autocatalysis achieves its maximum
the steady state appropriate for the new valueofrhis is ~ V@lue—is not negligible. In all the cases we considered the
illustrated in Fig. 8b), for x=0.045508, still withD = 0.4. Hopf bifurcation was subcritical since we were unable to find
From the temporal evolutions we were able to estimate th@ny Spatially bounded, oscillatory solutions, though we did

eigenvalues associated with it, and these were found to be #f€ the system undergoing a large number of oscillations
good agreement with those calculated from the linear stabil?€fore approaching the homogeneous unreacted state. Our
ity analysis. numerical search was not exhaustive, since we were inter-

ested here in showing the possible existence of stable station-

ary concentration profiles. At this point we are unable to say

whether there are parameter values for which the Hopf bifur-
We have shown that reaction balls—the steady, spherication is supercritical and bounded oscillatory profiles exist.

cally symmetric solutions to the reaction-diffusion equationsin the context of the non-isothermal flame with heat losses

based on the autocatalytic reactith coupled with the de- [3], Buckmasteret al. concluded that there was risimple

cay step(2)—depend only on the parametér representing Hopf bifurcation, although they were unable to exclude the

the rate of decay of the autocatalyst relative to its productionpossibility of a degenerate Hopf point, and they found no

as well asp andq, the orders of the autocatalysis and decaystable periodic solutions in their numerical computations.

steps, respectively. The diffusion coefficients of the reactant In this work we have shown the possibility of existence of

and autocatalyst can be scaled out of the steady problem. Ogtable spherical reaction fronts in isothermal autocatalytic

results have shown that there are two types of steady state8ystems with autocatalyst decay. It is a further example of

In one, there is, for given values pfandg, a single solution ~analogy with pre-mixed flames in combustion studies; al-

for each value oK. In the other type of solution, there is a though experimental realization of the phenomenon may

critical valueK i, of K with two solutions fork <K; and  seem more difficult than that of cellular frorjts7] as a result

no solutions fork >K,;. Our numerical integrations show Of the high order with respect to the autocatalyst required to

that the conditiog<p is required for multiple solutions, the Mmaintain sufficient feedback.

solutions are monotone ik for g=p. We were also able to

show that havingy<p is necessary and sufficient for mul- ACKNOWLEDGMENTS

tiple solutions in the large limit. Both these conclusions

strongly suggest that the conditi is required in gen-
gly Stgg =P g g Hungarian Scholarship Boaf#inistry of Education under

eral for multiple solutions. 9T _ X .
Further evidence for the distinct difference in the naturet"€ir Joint Academic Research Program, the Hungarian Sci-

of the solution forq<p andq=p is provided by the travel- €ntific Research FunTKA Grant No. F031728 and by
ing fronts that can form as large time solutions to reaction{Ne ESF Scientific program REACTOR.

diffusion equations based on E¢%) and(2). General values

of p and q were considered in Refl10], where it was de- APPENDIX A

duced that, whe>p, there is no restriction oK for wave
formation (though there is a threshold input & for p
>3). Wheng=p, traveling waves can form only K<1.
Specific examples of these two cases treated in Réfs9)
show that the solutions, when they exist, are single valued in

K. Wheng<p there is a critical value oK for the existence r=pX(p)+r, =
of waves with solutions being multivalued for values Kf

less than thig8].

When we considered the corresponding time-dependenhere X(p) is the location of the autocatalytic reaction in
problem, we noted thab, the ratio of the diffusion coeffi- Ed.(1) and is to be determined. In this regibs1 and both
cients of autocatalyst and reactant, cannot be scaled out é¢action terms are negligible farlarge. We look for a solu-
the problem and that the temporal stability depended on thion in this region by expanding
parameter as well. For values @ sufficiently small, a

V. CONCLUSIONS

This work was supported by the British Council and the

In this section we derive expressi¢oh6) and boundary-
value problen(17,18 from Eq.(11). We start our solution in
the outer diffusive region. Here we put, followifd],

T

change in stability was seen to arise through a Hopf bifurca- X(p)=Xo+X;p~ -, (A1)
tion. Our numerical study suggests that havidg<l is a

necessary condition but is not sufficient in general. This a(gp)=ag(d+ay(Hp -,

change in stability occurred only when there were multiple

solutions(on the upper branches in Fig\.. This suggests that b(£;p)=bo({)+by(Hp t+---.

havingg<p was also a necessary condition for stable solu-
tions. The stability of the upper branch resembles that ofiVe find that
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¢ X,¢ If we now use EQ.A8) to eliminateA, and integrate the
ao:X 7 ™ o (A2) resulting equation once, we find on applying E45) that
ot ¢ (Xot4) Bo— asBy— 1/Xy, and that
Xo XoX1 1 X1
bo= , b B’2=——2(B - +1|e P A10
" Xo+¢ Y (Xet+ )2 ° X2 ° X, (A10)

Note that thea; andb; have been chosen to satisfy the outerlf we now apply Eq.(A9) in Eg. (A10), we obtain
boundary conditions witta, small andby=1 for { small,
anticipating the matching with the reaction zone, which is
what we now consider.

For the reaction region we leaveunscaled and put

1
x3=§eX1’Xo. (A11)

To continue the solution we need to consider briefly the
a=Ap !, b=1-Bp L (A3) equations aD(p ). The reaction terms can be eliminated
from these equations to give the single equation
This results in the equations 5 5
A+ —A)=B]+ —B{.
2 1 X 0 1 X 0
A+ ——— A —A(1-Bp HP=0, (Ad) 0 0

A1
p(X+rp—) This equation can be integrated to give
2 K X
B"+ ————B'—A(1-Bp HP+—(1-Bp 1% Al=B/+
p(X+rp™h) p? %

=0, on using Eq.(A8) and applying the matching conditions

where primes denote differentiation with respect tdFrom (A5). Now lettingA,—0 asr— —, we find that

Eqg. (A2), the matching conditions are

Xir  —
— B;~—— asr——oo, (A12)
2 2
r re Xor| 0
A~ ; ——J plte,  (AD)
0 Xa  Xo From Egs.(A9) and (A12) we have
X 2 2Xyr X1 Xqr _
B~ +o+| ——-— e a—0, b~1—-—p +—p2+... asr——o,
Xo  Xo X3 XSA) P - Xo P X3 P -
—_ (A13)
asr—o, , . _ .
We look for a solution of equation@4) by expanding Exp(;e33|don(A13) suggests a further inner region in which
a=0 an
Ar;p)=Ag(r) + A (N)p 1+, b=1-Upl Y=rpl,
B(r;p)=Bo(r)+By(r)p 4 - . (A6)  where U representing the concentration Bf satisfies the
. . equation
At leading order we find
2 _
Aj—Age Bo=0, Bfj—Age Bo=0. (A7) U+ o——=U'+K(1-Up H%P=0 (A14)

X(p)+Y

Eliminating the reaction terms from Eq6A7), integrating

: . - ) (primes now denote differentiation with respectvtp. If we
and applying the matching conditiof&5) gives

now look for a solution by expanding in inverse powerpof
X we find that the leading order terb), satisfies
Ap=B,— X—l (A8) )
0 =
Ug+ o——< Ui+ Ke %Y=,
0" Xo+Y 0

We wish to apply the boundary conditioA—0 asr—

—, i.e., whole of the reactant used up in the reaction zone, X1 Y
so that U0~—(1——+ as Y—0, (A15)
Xo Xo
Ag—0, By— ﬁ asrt— — oo (A9) together with the condition, from E¢9), thatU,, is bounded
Xo asY— — X,. To obtain the boundary-value problem in Egs.
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(_17) and (18), we introduce a new modified space variablea function of «. Numerical integrations show thaty(«)

Y=Xo/Y which fixes the range of integration te 1<Y
<0.

APPENDIX B

In this section we show thaf,<1 is required for multiple
solutions in Egs.(17) and (18). Taking Ugy=(X;/Xg)
+(u/qp) leads, on using Eq16), to the problem

2
u"+ ——u’'+ ae =0,

1+Y
K X,
where o= =qpexp - (1—qp) |, (B1)
2 Xo
u(0)=0, u bounded atY=—1. (B2)

The problem given by Eqg¢B1) and(B2) involves only the
single parametes and its solution determinas (0)=ug as

<0 and thatu, is monotone decreasing ia, i.e., uj(a)
<0 for @=0. Now, from Eq.(A15), X;/Xy=—ug(a)/qo,

so that
=—expu .
Yo ot Yo

Turning points in the Efurcation diagram&ig. 5 corre-
spond to points wherdK/da=0 for a givenqy. Now

1-qo (1_%”:
Yo ) eXF{UO(Q) do (0'

B3)
A necessary condition for E¢B3) to hold is thatgy<<1 with
turning points where- auj(a)=dy/(1—qg). Our numeri-
cal integration suggests thatau(«) grows without bound
asa increases, sqp<1 is a sufficient condition as well.

dK
der

1+ aué(a)(
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