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Isothermal flame balls: Effect of autocatalyst decay
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The steady, spherically symmetric solutions to the reaction-diffusion equations based on a simple autocata-
lytic reaction followed by the decay of the autocatalyst are considered. Three parameters—the orders with
respect to the autocatalyst in the autocatalysisp and in the decayq and the rate of decay of the autocatalyst
relative to its autocatalytic productionK—determine the steady concentration profiles. Numerical integrations
for a fixed value of the order of the autocatalyst show that the concentration profiles have different forms
depending on whetherq,p or q>p. In the former case, there is a critical decay rateKcrit for solutions to
exist, with multiple solutions forK,Kcrit . In the latter case, there is a single solution for each value ofK. This
difference in the nature of the solution is confirmed by an analysis forp large. The temporal stability of the
isothermal flame balls is examined, with temporally stable solutions being possible, provided that the ratio of
the diffusion coefficient of the autocatalyst to that of the reactant is sufficiently small. The change in stability
appears only when there are multiple solutions and is through a subcritical Hopf bifurcation.
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I. INTRODUCTION

In a previous paper@1# we considered the steady, sphe
cally symmetric solutions on an infinite domain to a syst
of reaction-diffusion equations based on the single autoc
lytic reaction

A1p B→~p11!B, with rate k1abp, ~1!

wherep>1, anda andb are the concentrations of reactantA
and autocatalystB. We showed that a transformation of var
ables reduced the problem to a single equation in whichp,
the order of the autocatalysis, was the only parameter. T
equation has solutions satisfying the required boundary c
ditions only if p.5. For 1<p,5, all ~positive! solutions
have compact support, i.e., they are zero out of a boun
domain. We examined the nature of the solution both ap
→51 and whenp was large.

A further consideration of the time-dependent problem
up in Ref. @1# showed that these solutions were tempora
unstable to perturbations in the radial direction. Our stu
was motivated, in part, by the classic problem of ‘‘flam
balls,’’ or steady, radially symmetric solutions of th
reaction-diffusion-conduction equations for premixed lam
nar flames first identified by Zel’dovich@2#. In this context,
these solutions are also unstable in the adiabatic lim
though they can become stable if there is a~small! heat loss
@3#. The analogy between the feedback through the temp
ture in combustion systems and through the autocatalys
isothermal systems of the type given by Eq.~1! has previ-
ously been recognized. It has been shown@4# that a simple
cubic autocatalysis with appropriate difference in diffusi
ties can lead to cellular fronts similar to those observed
premixed flames with small Lewis numbers@5#. We would
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like to explore to what extent the analogy between premix
combustion and isothermal autocatalytic systems can
drawn. Spherical flames may be stabilized by radiative h
loss, which then suggests an extension to our kinetic sch
to include the additional decay step

B→C, with rate k2bq ~q>1!, ~2!

whereby the autocatalyst decays to an inert productC as a
kinetic mimic of heat loss. In studies of flame balls, radiati
introduces a term withTn with n52 –4 in the energy balanc
@3,6#; we therefore investigate the behavior of our system
various values ofq. The traveling front structures that th
reaction scheme in Eqs.~1! and ~2! can support have bee
examined in Refs.@7–10#, where it was seen that the add
tional decay step can make qualitative differences in the
havior of the solution. It can totally inhibit traveling fron
formation as well as making substantial changes to the t
eling front profiles that would otherwise form.

Here we consider the steady, spherically symmetric so
tions to the reaction-diffusion equations with reactions
Eqs.~1! and~2! as the kinetics. We are unable, as in Ref.@1#,
to reduce the problem to a single equation, but we can m
some simplifications to reduce the number of parametersp
and q ~orders of the autocatalysis and decay! and a further
parameterK which represents the rate of decay ofB relative
to its autocatalytic production. Numerical integrations for
fixed value ofp show that the solution has a different for
depending on whetherq,p or q>p. In the former case,
there is a critical valueKcrit of K for solutions to exist, with
multiple solutions forK,Kcrit . In the latter case, there is
single solution for each value ofK. This difference in the
nature of the solution is confirmed by an analysis forp large.
We also examine the temporal stability of the solutions, fin
ing stabilization, provided thatD, the ratio of the diffusion
coefficient ofB to that ofA, is sufficiently small. This change
©2003 The American Physical Society10-1
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in stability appears only when there are multiple solutio
and is through a subcritical Hopf bifurcation in the cas
studied here.

II. MODEL SYSTEM

The equations governing the reaction and diffusion of
two reactantsA andB are~see Refs.@8,11–13#, for example!

]a

]t
5DA¹2a2k1abp,

]b

]t
5DB¹2b1k1abp2k2bq,

~3!

whereDA andDB are the diffusion coefficients ofA andB,
respectively, subject to the boundary conditions

a→a0 , b→0 as uxu→`, ~4!

representing only reactantA sufficiently far from the reaction
zone and initial condition that

a5a0 , b50 at t50 ~5!

for all x, i.e., a homogeneous distribution of pureA apart
from some local region, centered on the origin, where th
is some input ofB to start a reaction. We make Eq.~3!
dimensionless using the reaction time (k1a0

p)21 and a length
scale based on this andDA , by putting

a5a0 ā, b5a0 b̄, t̄ 5~k1a0
p!t, x̄5xS k1a0

p

DA
D 1/2

.

~6!

This leads to the dimensionless equations~on dropping the
bars for convenience!

]a

]t
5¹2a2abp,

]b

]t
5D¹2b1abp2kbq, ~7!

whereD5DB /DA is the ratio of diffusion coefficients an
k5k2 /(k1 a0

p2q11) is the decay rate ofB with respect to the
autocatalysis.

We are investigating spherically symmetric concentrat
profiles, i.e., solutions to the equations

]a

]t
5

]2a

]r 2
1

2

r

]a

]r
2abp,

]b

]t
5DS ]2b

]r 2
1

2

r

]b

]r D 1abp2kbq, ~8!

on 0,r ,`, t.0, wherer measures the~radial! distance
from the origin, subject to

a, b continuous at r 50, a→1, b→0 as r→` ~ t.0!,

~9!

a51, b5big~r ! at t50 ~0,r ,`!,

where bi is a positive constant andg(r ) is some smooth
function, nonzero only for a finite range ofr with a maxi-
03621
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mum value of unity, defining the local input of the autoca
lyst to initiate the reaction. We start by considering the ex
tence of reaction balls which are steady state solutions
Eqs.~8! and ~9!.

III. STEADY SOLUTIONS

We can, following the approach given in Ref.@1#, scale
out the ratio of diffusion coefficients,D, from the equations
for the steady solutions—Eqs.~8! with vanishing time
derivatives—by substituting

b5D21b̃, r̃ 5D2p/2r , ~10!

and leavinga unchanged. This leads to the reduced syst
~on omitting the tildes!

a91
2

r
a82abp50, b91

2

r
b81abp2K bq50 ~11!

still subject to Eq.~9!, whereK5Dp2qk and where primes
denote differentiation with respect tor.

The steady states are then dependent only on the si
parameterK, representing the relative decay rate of the a
tocatalyst in the new coordinate system; though we note
their temporal stability depends separately on bothD andK
~or k). It is the nontrivial~i.e.,a[” 1, b[” 0) solutions to Eqs.
~11! subject to Eq.~9! that we now consider in detail.

A. Numerical simulations

We obtain numerical solutions of Eq.~11! that are
bounded asr→0. This means that they have the form

a5a01S a0b0
p

6 D r 21S a0b0
2p1pa0b0

p21~Kb0
q2a0b0

p!

120 D r 4

1O~r 6!, ~12!

b5b02
1

6
~a0b0

p2Kb0
q!r 2

2S a0b0
2p2~pa0b0

p212qKb0
q21!~a0b0

p2Kb0
q!

120 D r 4

1O~r 6!,

for r small resulting from the zero-concentration gradients
the origin. Herea0 andb0 are the central concentrations o
the reactantA and autocatalystB, respectively, to be deter
mined in the numerical integrations.

Previously@1# ~with K50) we obtained the ground state
or fastest decaying solutions representing the critical dis
bution of B, above which an outpropagating front is gene
ated and below which the initiation collapses to the triv
state containing only reactantA. This meant looking for so-
lutions which wereO(r 21) for r large. The situation is dif-
ferent withK.0, and the form forb which decays fastest a
r→` needs to be considered. Forq51 the analytical solu-
tion is taken at the limitr→`, for qÞ3 the form of b
0-2
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;O(r2m) is tested while forq53, b;O„r 21@ ln(r)#2m
… is

applied for matching the exponents in the terms with lead
order, resulting in

b;
C2

r
e2AKr for q51, ~13!

b;
C2

r 2/(q21)
for 1,q,3,

b;
C2

rAln r
for q53,

b;
C2

r
for q.3

for r large, taking

a;12
C1

r
~14!

in all cases withC1 and C2 constants that are also dete
mined in the numerical integrations.

The solutions for small and larger given by Eqs.~12!–
~14! were joined numerically using a standard shoot
method for solving boundary-value problems. The solut
was calculated atr 50.001 using Eq.~12!, and this was ex-
tended numerically using theCVODE package@14#. The val-
ues ofa0 andb0 were adjusted until the behavior given b
~13! and~14! was approached at a large value ofr. We found
that taking values ofr between 200.0 and 400.0 gave suf
cient accuracy. This procedure determines the values ofa0 ,
b0 , C1, andC2 for given values ofK,p,q.

For the results presented below we selectp56, being the
smallest integer where a stationary spherical solution ex
for K50 @1#, and consider different values forq. In Fig. 1
we plot the ‘‘reaction radius’’Rb againstK, whereRb is the
position at which the local autocatalytic reactionr 2abp

achieves its maximum value. We identify two qualitative
different types of behavior. The curves for those values oq

FIG. 1. Reaction radiusRb as a function ofK for p56 and
range of values forq from q51 to q57.
03621
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such thatq,p have a qualitatively similar form, in that ther
is a critical valueKcrit for K. A saddle-node bifurcation oc
curs atK5Kcrit , with no solutions forK.Kcrit and two
solution branches forK,Kcrit . The figures resemble thos
observed in flame studies where the radius is shown aga
the parameter representing heat loss@3,6#. All the lower
branch solutions start at the same value forRb asK→0, the
value obtained in Ref.@1# for p56, and the upper branch
solutions appear to approach theK50 axis asK decreases.
The curves for values ofq>p (q56,7) are monotone, with
Rb increasing asK is increased. A graph ofKcrit againstq,
shown in Fig. 2, illustrates thatKcrit increases very rapidly
asq approachesq56 ~asq→p2), as perhaps could be ex
pected.

Typical differences between the lower and upper bran
concentration profiles~as identified in Fig. 1! can be seen in
Fig. 3~a!, where we plota andb profiles forp56, q51, and
K50.0001. The outer boundary conditions are approache
relatively small values ofr for the lower branch solutions
~broken lines!, whereas considerably larger values ofr are
required for the upper branch solutions~full lines!. The val-
ues of botha0 andb0 are higher for the lower branch solu
tions which are monotone~increasing fora and decreasing
for b). The upper branch profile forb has a local maximum
~in this case of approximately 0.393 28 atr 5r m.60.9) be-
fore decreasing to zero for larger. This internal maximum is
a feature of the profiles for smaller values ofK and is lost at
higher K, as can be seen in Fig. 3~b! where we plot the
corresponding profiles forK50.0005. Here the~upper
branch! profile for b is monotone decreasing though there
central region whereb takes almost constant values anda is
almost zero. This effect is also seen in Fig. 3~a!. The con-
centration profiles of the autocatalystb again return the char
acteristics of observed temperature distributions in fla
balls @15,16#.

The features noted for the concentration profiles shown
Fig. 3 are brought out more clearly in Fig. 4. In Fig. 4~a! we
plot b0, the concentration of the autocatalystB at the center,
againstK ~again forp56,q51), the values corresponding t
the upper and lower branches shown in Fig. 1 are noted
the figure. This figure shows clearly thatb0 is always greater

FIG. 2. Variation ofKcrit with q for p56.
0-3
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for the lower branch solutions than for upper branch so
tions. An analogous temperature difference for the upper
lower branches has led to the labeling as ‘‘cold giant’’ a
‘‘hot dwarf,’’ respectively, in flame studies@6#. Note that, for
the lower branch,b0 increases initially withK from its value
for K50 before decreasing to its value at the saddle-n
bifurcation. In Fig. 4~b! we plot r m , the position of the in-
ternal maximum inb for the upper branch solutions. Th
figure emphasizes that this effect requiresK to be relatively
small, i.e.,K,K0 (K0.3.08331024 for this case!. For K
.K0 , r m50 andb is monotone decreasing for allr.

The asymptotic solution forp@1 obtained in Ref.@1#
provided useful insights into the nature of the solution wh
K50. This limit is also a useful guide to the behavior of t
solution whenKÞ0, and it is this limit that we conside
next.

B. Solution for p large

In this section we derive a relation betweenK and the
reaction radiusRb analytically, using an asymptotic expan
sion for large values ofp. This relation arises from a
boundary-value problem, i.e., a boundary-value problem
be derived, and for a given value ofK the value ofRb can be
obtained by solving this problem. We concentrate on the c

FIG. 3. Concentration profilesa andb for the upper branch~full
lines! and the lower branch~broken lines! for p56, q51, and~a!
K51024 and ~b! K5531024.
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whereq;p@1, and to obtain a consistent matching for th
case we require thatK be small, of the orderO(p23). We
then take

q5p q0 , K̄5
K

p3
, ~15!

whereq0 and K̄ are O(1). In this case the structure of th
solution forKÞ0 for p andq large is similar to that found in
Ref. @1# when K50. There is a relatively thin reaction re
gion at a distanceX(p) of O(p) from the center. Ahead o
this is a thicker outer region which is dominated by diff
sion. The central inert core region, seen whenK50, now
becomes a region in which the effects of the decay reac
in Eq. ~2! are significant. It is the matching of the solution
in these three regions that determines the ‘‘reaction radi
in terms of K̄. The details of the calculations are given
Appendix A. Here we present the main results of the mat
ing.

We look for a solution of Eqs.~11! by putting r 5pX(p)
1 r̄ and expanding

X~p!5X01X1p211•••.

FIG. 4. ~a! Variation of the concentration ofB at the center (r
50) with K. ~b! Dependence ofr m , the position whereb achieves
its local maximum~upper branch solutions!, on K. Both graphs are
for p56, q51.
0-4
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At leading order we obtain a relation betweenX1 and X0,
namely,

X0
25

1

2
eX1 /X0 ~16!

~see Appendix A for further details!. The description is com-
pleted andX0 determined in the inner region, where whole
the reactantA has been consumed and in which we put

Ȳ5
r 2pX~p!

X0p
, b512p21~U01p21U11••• !.

Here Ȳ is a modified space variable andU0 ,U1 , . . . repre-
sent the concentration ofB. Solving the resulting boundary
value problem

U091
2

11Ȳ
U081K̄X0

2e2q0U050, ~17!

U0~0!5U08~0!5
X1

X0
, U0 bounded at Ȳ521

~18!

together with Eq.~16!, gives the relation betweenK̄ andX0.
We note that, ifK̄50, then U0[0, X150, and Eq.~16!

gives the valueX051/A2 found in Ref.@1#. For K̄Þ0, Eqs.
~17! and ~18! have to be solved numerically to determin
X1 /X0, which can then be used in Eq.~16! to determine how
X0 varies with K̄. Note thatX0 gives the location of the
autocatalytic reaction~to leading order! and is effectively the
reaction radiusRb used in Fig. 1.

The results are shown in Fig. 5 where we plotX1 /X0

againstK̄ for a range ofq0, which is essentially ln(Rb) plot-
ted againstK/p3. The important point to note from the figur
is that there is a critical valueK̄crit of K̄ for q0,1 @Fig. 5~a!#
and no such critical value forq0>1. This is illustrated in
Fig. 5~b! where we contrast results forq050.95 with those
for q051, 1.05. The values ofK̄crit are relatively large and
increase considerably asq0→1 from below. This can be see
in Fig. 5~a! and more clearly in Table I, where we giveK̄crit
for increasing values ofq0. For p56 and q055/6 ~corre-
sponding to the largest value ofq plotted in Fig. 2!, we
obtain Kcrit50.229 from thep@1 solution. This is some-
what of an overestimate of the valueKcrit50.057 469 7 ob-
tained from the numerical solutions, though good agreem
at this relatively low value ofp could not really be expected
It is shown directly in Appendix B that havingq0,1 ~i.e.,
havingq,p) is necessary for multiple solutions.

A relatively straightforward regular expansion inK̄ for
the lower branch solutions gives

X5
1

A2
S 11

K̄

12
1O~K̄2! D
03621
nt

or Rb5
p

A2
S 11

K

12p3
1••• D for K̄ small. ~19!

This expansion is independent ofq0 up to O(K̄), and so all
the lower branch solutions leave theK̄50 axis ~at X0

FIG. 5. Plots ofX1 /X0 againstK̄ obtained from the numerica
solution of Eqs.~17! and ~18! for the asymptotic expansion forp
large. The position of the ‘‘reaction radius’’ is given byX0, where
X05exp(X1/2X0)/A2; ~a! q050.5,0.6,0.7,0.8,0.9 and~b! q0

50.95,1,1.05 to show thatq0,1 is necessary for the existence of
critical point.

TABLE I. Values of K̄crit for different q0 obtained from Eq.
~A14! for the asymptotic expansion forp large.

q0 K̄crit

0.2000 4.4149
0.5000 8.2407
0.6000 11.3957
0.7000 17.8472
0.8000 35.6098
0.8333 49.5666
0.9000 132.2332
0.9500 563.5950
0-5
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51/A2) with the same slope. This can be clearly seen in F
5~a! and is also a feature of the results shown in Fig. 1.

IV. STABILITY

In our previous study@1# the steady states that we o
tained were temporally unstable. They could be regarde
giving initial conditions dividing cases where propagati
reaction-diffusion fronts formed from those where propa
tion failed and the system returned to its original unreac
state. The effect of including the decay of the autocatalys
the reaction scheme, Eqs.~1! and ~2!, is to change the tem
poral stability and allow stable, time-independent states
form. We find that these stable states arise only on the up
branch solutions~as identified in Fig. 1!, suggesting that we
require higher order for the autocatalyst than for the orde
the removal (q,p) for stable states.

To investigate the stability of the reaction balls—
nontrivial solutions to Eqs.~8!—we have to treatD and k
separately@transformation~10! is appropriate only for the
steady states#. We concentrate on the specific casep56,
q51, though similar behavior has been seen for other va
of q. In Fig. 6 we plotRb againstk for a range ofD. In the
figure the broken lines correspond to unstable and the
lines to stable solutions. Figure 6 shows that a value oD
,1 is necessary to have a stable state with the onse
stability occurring betweenD51/2 andD52/3.

If we examine the dominant eigenvalues arising from
linear stability analysis of the discrete system in more det
we find that the lower branch solutions are all unsta
~saddle points with real eigenvalues of opposite sign!. The
turning points correspond to saddle-node bifurcations~as
would be expected!, with the upper branch solution changin
to an unstable node~positive real eigenvalues!. For D suffi-
ciently small, there are further changes, first to an unsta
focus and finally to a stable focus~complex eigenvalues with
the real part changing sign!. Thus we can identify the chang
in stability as being through a Hopf bifurcation. In Fig. 7 w
show how the values ofK(5Dp2qk, hereD5k), as used in
the steady state solutions, at which the Hopf bifurcation
curs ~on the upper branch! varies with D. In this plot the

FIG. 6. Graph of the reaction radiusRb as a function ofk for
p56,q51 and range of values forD51,2/3,0.5,0.4. The broken
lines correspond to unstable and the full lines to stable solution
03621
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saddle-node bifurcation occurs at the same value ofK ~here
at K56.190 2531024). The increase in the domain of sta
bility with decreasingD is in accordance with the simila
effect obtained for decreasing Lewis number for flame ba
in combustion systems@3#.

We integrated initial-value problem~8! numerically start-
ing with initial profiles fora andb calculated from the shoot
ing method used to determine the steady states. We use
same grid size that was used for the calculation of the eig
values. We considered a value fork just on the unstable side
of the Hopf bifurcation. The~small! errors introduced
through the numerical integration of the time-depend
equations caused the system to move away from the ste
state, very slowly at first, and to perform a series of relativ
long-lived oscillations of slowly increasing amplitude befo
finally it collapsed to the state containing a homogene
distribution of reactantA, i.e, the trivial solution of Eq.~8!.
The nature of these oscillations is shown in Fig. 8~a! with a

. FIG. 7. Location of the Hopf bifurcation~on the upper branch
solutions! for a range ofD, with p56, q51. Also shown with
dotted line is the location of the saddle-node bifurcation.

FIG. 8. Temporal evolution of the radiusRb obtained from the
numerical integration of the initial-value problem~8! for D50.4
and ~a! k50.046 299 1, showing the oscillatory growth of the s
lution on the unstable side of the Hopf bifurcation,~b! k
50.045 508, showing the solution decaying to the steady state
the stable side of the Hopf bifurcation.
0-6
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ISOTHERMAL FLAME BALLS: EFFECT OF . . . PHYSICAL REVIEW E 68, 036210 ~2003!
plot of Rb againstt for a time period after the oscillations ha
become large enough to be seen graphically. For this fig
we tookk50.046 299 1,D50.4. We then changed the valu
of k slightly to a value just on the stable side of the Ho
bifurcation and started the numerical integration with t
previous profiles fora andb. Here the system relaxed back
the steady state appropriate for the new value ofk. This is
illustrated in Fig. 8~b!, for k50.045 508, still withD50.4.
From the temporal evolutions we were able to estimate
eigenvalues associated with it, and these were found to b
good agreement with those calculated from the linear sta
ity analysis.

V. CONCLUSIONS

We have shown that reaction balls—the steady, sph
cally symmetric solutions to the reaction-diffusion equatio
based on the autocatalytic reaction~1! coupled with the de-
cay step~2!—depend only on the parameterK, representing
the rate of decay of the autocatalyst relative to its product
as well asp andq, the orders of the autocatalysis and dec
steps, respectively. The diffusion coefficients of the reac
and autocatalyst can be scaled out of the steady problem.
results have shown that there are two types of steady st
In one, there is, for given values ofp andq, a single solution
for each value ofK. In the other type of solution, there is
critical valueKcrit of K with two solutions forK,Kcrit and
no solutions forK.Kcrit . Our numerical integrations show
that the conditionq,p is required for multiple solutions, the
solutions are monotone inK for q>p. We were also able to
show that havingq,p is necessary and sufficient for mu
tiple solutions in the largep limit. Both these conclusions
strongly suggest that the conditionq,p is required in gen-
eral for multiple solutions.

Further evidence for the distinct difference in the natu
of the solution forq,p andq>p is provided by the travel-
ing fronts that can form as large time solutions to reacti
diffusion equations based on Eqs.~1! and~2!. General values
of p and q were considered in Ref.@10#, where it was de-
duced that, whenq.p, there is no restriction onK for wave
formation ~though there is a threshold input ofB for p
.3). Whenq5p, traveling waves can form only ifK,1.
Specific examples of these two cases treated in Refs.@7–9#
show that the solutions, when they exist, are single value
K. Whenq,p there is a critical value ofK for the existence
of waves with solutions being multivalued for values ofK
less than this@8#.

When we considered the corresponding time-depend
problem, we noted thatD, the ratio of the diffusion coeffi-
cients of autocatalyst and reactant, cannot be scaled ou
the problem and that the temporal stability depended on
parameter as well. For values ofD sufficiently small, a
change in stability was seen to arise through a Hopf bifur
tion. Our numerical study suggests that havingD,1 is a
necessary condition but is not sufficient in general. T
change in stability occurred only when there were multi
solutions~on the upper branches in Fig. 1!. This suggests tha
havingq,p was also a necessary condition for stable so
tions. The stability of the upper branch resembles that
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flame balls with far field heat losses@3#: the stable region
appears at smallK and it grows towards the saddle-nod
bifurcation atKcrit on decreasingD or the corresponding
Lewis number in flames. This implies that the decay of t
autocatalyst outside the reaction radius—defined as the p
tion at which the local autocatalysis achieves its maxim
value—is not negligible. In all the cases we considered
Hopf bifurcation was subcritical since we were unable to fi
any spatially bounded, oscillatory solutions, though we
see the system undergoing a large number of oscillati
before approaching the homogeneous unreacted state.
numerical search was not exhaustive, since we were in
ested here in showing the possible existence of stable sta
ary concentration profiles. At this point we are unable to s
whether there are parameter values for which the Hopf bi
cation is supercritical and bounded oscillatory profiles ex
In the context of the non-isothermal flame with heat los
@3#, Buckmasteret al. concluded that there was no~simple!
Hopf bifurcation, although they were unable to exclude t
possibility of a degenerate Hopf point, and they found
stable periodic solutions in their numerical computations.

In this work we have shown the possibility of existence
stable spherical reaction fronts in isothermal autocatal
systems with autocatalyst decay. It is a further example
analogy with pre-mixed flames in combustion studies;
though experimental realization of the phenomenon m
seem more difficult than that of cellular fronts@17# as a result
of the high order with respect to the autocatalyst required
maintain sufficient feedback.
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APPENDIX A

In this section we derive expression~16! and boundary-
value problem~17,18! from Eq.~11!. We start our solution in
the outer diffusive region. Here we put, following@1#,

r 5pX~p!1 r̄ , z5
r̄

p
,

whereX(p) is the location of the autocatalytic reaction
Eq. ~1! and is to be determined. In this regionb,1 and both
reaction terms are negligible forp large. We look for a solu-
tion in this region by expanding

X~p!5X01X1p211•••, ~A1!

a~z;p!5a0~z!1a1~z!p211•••,

b~z;p!5b0~z!1b1~z!p211•••.

We find that
0-7
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a05
z

X01z
, a152

X1z

~X01z!2
, ~A2!

b05
X0

X01z
, b152

X0X1

~X01z!2
.

Note that theai andbi have been chosen to satisfy the ou
boundary conditions witha0 small andb0.1 for z small,
anticipating the matching with the reaction zone, which
what we now consider.

For the reaction region we leaver̄ unscaled and put

a5Ap21, b512Bp21. ~A3!

This results in the equations

A91
2

p~X1 r̄ p21!
A82A~12Bp21!p50, ~A4!

B91
2

p~X1 r̄ p21!
B82A~12Bp21!p1

K̄

p2
~12Bp21!q0p

50,

where primes denote differentiation with respect tor̄ . From
Eq. ~A2!, the matching conditions are

A;
r̄

X0
1S 2

r̄ 2

X0
2

2
X1r̄

X0
2 D p211•••, ~A5!

B;
r̄

X0
1

X1

X0
1S 2

r̄ 2

X0
2

2
2X1r̄

X0
2 D p211•••

as r̄→`.
We look for a solution of equations~A4! by expanding

A~ r̄ ;p!5A0~ r̄ !1A1~ r̄ !p211•••,

B~ r̄ ;p!5B0~ r̄ !1B1~ r̄ !p211•••. ~A6!

At leading order we find

A092A0e2B050, B092A0e2B050. ~A7!

Eliminating the reaction terms from Eqs.~A7!, integrating
and applying the matching conditions~A5! gives

A05B02
X1

X0
. ~A8!

We wish to apply the boundary conditionA→0 as r̄→
2`, i.e., whole of the reactant used up in the reaction zo
so that

A0→0, B0→
X1

X0
as r̄→2`. ~A9!
03621
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If we now use Eq.~A8! to eliminateA0 and integrate the
resulting equation once, we find on applying Eq.~A5! that
B0→` asB08→1/X0, and that

B08
25

1

X0
2

22S B02
X1

X0
11De2B0. ~A10!

If we now apply Eq.~A9! in Eq. ~A10!, we obtain

X0
25

1

2
eX1 /X0. ~A11!

To continue the solution we need to consider briefly t
equations atO(p21). The reaction terms can be eliminate
from these equations to give the single equation

A191
2

X0
A085B191

2

X0
B08 .

This equation can be integrated to give

A185B181
X1

X0
2

on using Eq.~A8! and applying the matching condition
~A5!. Now lettingA1→0 as r̄→2`, we find that

B1;2
X1r̄

X0
2

as r̄→2`. ~A12!

From Eqs.~A9! and ~A12! we have

a→0, b;12
X1

X0
p211

X1r̄

X0
2

p221••• as r̄→2`.

~A13!

Expression~A13! suggests a further inner region in whic
a[0 and

b512Up21, Y5 r̄ p21,

where U representing the concentration ofB satisfies the
equation

U91
2

X~p!1Y
U81K̄~12Up21!q0p50 ~A14!

~primes now denote differentiation with respect toY). If we
now look for a solution by expanding in inverse powers ofp,
we find that the leading order termU0 satisfies

U091
2

X01Y
U081K̄e2q0U050,

U0;
X1

X0
S 12

Y

X0
1••• D as Y→02, ~A15!

together with the condition, from Eq.~9!, thatU0 is bounded
asY→2X0. To obtain the boundary-value problem in Eq
0-8
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~17! and ~18!, we introduce a new modified space variab
Ȳ5X0 /Y which fixes the range of integration to21,Ȳ
,0.

APPENDIX B

In this section we show thatq0,1 is required for multiple
solutions in Eqs. ~17! and ~18!. Taking U05(X1 /X0)
1(u/q0) leads, on using Eq.~16!, to the problem

u91
2

11Ȳ
u81ae2u50,

where a5
K̄

2
q0 expS X1

X0
~12q0! D , ~B1!

u~0!50, u bounded atȲ521. ~B2!

The problem given by Eqs.~B1! and~B2! involves only the
single parametera and its solution determinesu8(0)[u0 as
d

of

m

m

st

on

r.

03621
a function of a. Numerical integrations show thatu0(a)
,0 and thatu0 is monotone decreasing ina, i.e., u08(a)
,0 for a>0. Now, from Eq.~A15!, X1 /X052u0(a)/q0,
so that

K̄5
2a

q0
expFu0~a!S 12q0

q0
D G .

Turning points in the bifurcation diagrams~Fig. 5! corre-
spond to points wheredK̄/da50 for a givenq0. Now

dK̄

da
5

2

q0
F11au08~a!S 12q0

q0
D GexpFu0~a!S 12q0

q0
D G50.

~B3!

A necessary condition for Eq.~B3! to hold is thatq0,1 with
turning points where2au08(a)5q0 /(12q0). Our numeri-
cal integration suggests that2au08(a) grows without bound
asa increases, soq0,1 is a sufficient condition as well.
r. A
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